博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
最短路 - spfa
阅读量:6954 次
发布时间:2019-06-27

本文共 3637 字,大约阅读时间需要 12 分钟。

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input
Line 1: A single integer,
F.
F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively:
N,
M, and
W
Lines 2..
M+1 of each farm: Three space-separated numbers (
S,
E,
T) that describe, respectively: a bidirectional path between
S and
E that requires
T seconds to traverse. Two fields might be connected by more than one path.
Lines
M+2..
M+
W+1 of each farm: Three space-separated numbers (
S,
E,
T) that describe, respectively: A one way path from
S to
E that also moves the traveler back
T seconds.
Output
Lines 1..
F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
Sample Input
23 3 11 2 21 3 42 3 13 1 33 2 11 2 32 3 43 1 8
Sample Output
NOYES
Hint
For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
 
题意 :
  有一个新概念虫洞,这个人可以穿过这条道路,并且时间会回溯T妙,问此人是否可以通过穿越虫洞回溯时间看到自己。实质上就是判断图中有无负环。
思路 :
SPFA : BF算法的优化,从一个点出发,更新它可以到达的所有点,把可以到的,更新的点,并且不再队列中的点,再重新加入到队列中。
    如何判断有无负环呢?一个点的更新次数如果大于 n-1次,那么一定存在负环,因为一个点被加入队列两次,意味着这个点在BF 中被更新两次,那么这个点如果加入队列的次数大于 n-1 次,那么则存在负环。
代码示例 :
const int inf = 1 << 29;int n,m, w;struct ed{    int to, cost;    ed(int _t = 0, int _c = 0):to(_t),cost(_c){}};vector
edge[505];bool vis[505];int d[505];int cnt[505];bool spfa(){ queue
que; memset(cnt, 0, sizeof(cnt)); memset(vis, false, sizeof(vis)); for(int i = 1; i <= 500; i++) d[i] = inf; d[1] = 0; cnt[1] = 1; que.push(1); while(!que.empty()){ int u = que.front(); que.pop(); vis[u] = false; for(int i = 0; i < edge[u].size(); i++){ int to = edge[u][i].to; int cost = edge[u][i].cost; if (d[u]+cost < d[to]){ d[to] = d[u]+cost; if (!vis[to]){ vis[to] = true; que.push(to); cnt[to]++; if (cnt[to] > n) return true; } } } } return false;}int main() { int t; int a, b, c; cin >>t; while(t--){ scanf("%d%d%d", &n, &m, &w); for(int i = 1; i <= 500; i++) edge[i].clear(); for(int i = 1; i <= m; i++){ scanf("%d%d%d", &a, &b, &c); edge[a].push_back(ed(b,c)); edge[b].push_back(ed(a,c)); } for(int i = 1; i <= w; i++){ scanf("%d%d%d", &a, &b, &c); edge[a].push_back(ed(b, -c)); } if (spfa()) printf("YES\n"); else printf("NO\n"); } return 0;}

 

 

  

转载于:https://www.cnblogs.com/ccut-ry/p/7786661.html

你可能感兴趣的文章
用open***组建lan to lan ***
查看>>
我的友情链接
查看>>
Invalid source HTML for this operation , Error In IE
查看>>
Linux服务器间建立双向信任-无密码相互访问
查看>>
【COCOS2D-HTML5 开发之二】cocos2d-html5项目定义成员,局部变量,函数笔记随笔
查看>>
rsync与inotify
查看>>
将博客搬至CSDN
查看>>
使用docker镜像玩转steam挂卡
查看>>
修改root密码方式及克隆虚拟机
查看>>
hadoop技术入门学习之发行版选择
查看>>
spring-boot官方参考文档(使用spring-boot)(2.2)
查看>>
scrapy之异步写入数据库
查看>>
贪吃蛇
查看>>
现代图像处理技术试题
查看>>
ffmpeg的使用
查看>>
Oracle 白皮书-Oracle Data Guard 快速启动故障切换指南(1)
查看>>
通过案例学调优之--和 SHARED POOL 相关的主要 Latch
查看>>
sql server 数据库索引
查看>>
[spring-framework]Spring中集成RMI(远程方法调用)
查看>>
活动目录实战之十二 windows 2008 r2 AD 备份和还原 (下)-授权还原
查看>>